IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Non-integrable representations of the restricted quantum analogue of sl(3)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 3527
(http://iopscience.iop.org/0305-4470/30/10/027)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:19

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 3527-3541. Printed in the UK PIl: S0305-4470(97)79029-2

Non-integrable representations of the restricted quantum
analogue ofsl(3)

D Arnaudorf

Laboratoire de Physique €brique Enslapp Groupe d’Annecy: LAPP, BP 110, F-74941
Annecy-le-Vieux Cedex, France

Received 24 October 1996

Abstract. The structure of irreducible representations of (restrictéd)/(3)) at roots of unity

is understood within the Gelfand—Zetlin basis. The latter needs a weakened definition for non-
integrable representations, where the quadratic Casimir operator of the quantum subalgebra
U, (s1(2)) C Uy (s1(3)) is not completely diagonalized. This is necessary in order to take into
account the indecomposalilg (s/(2))-modules that appear. The set of redefined (mixed) states
has a teepee shape inside the pyramid made with the whole representation.

1. Introduction

In this paper, we are interested in finite-dimensional representations of the quantum analogue
of the enveloping algebra of (3) at roots of unity, in the restricted specialization.

When the deformation parametey, is not a root of unity, the finite-dimensional
irreducible representations of quantum groups, as defined in [1,2], are in correspondence
with the classical ones [3, 4]. This correspondence’#8<fo-one, the factor 2" being
related to trivial isomorphisms of the quantum enveloping algebra.

Wheng is a root of unity, the dimension of finite-dimensional irreducible representations
is bounded. In the unrestricted specialization, new classes of irreducible representations
appear that are characterized by continuous parameters (see [3](fd¢(2)) and [6] for
generall/,(G)). We do not consider them here, since we are interested in the restricted
specialization, and more precisely in its finite-dimensional Hopf subalgebra, where the
raising and lowering generators are nilpotent and where the Cartan generators are quantized.
In this case, the finite-dimensional irreducible representations can be obtained as a quotient
of Verma modules (with integral dominant highest weights) by their maximal submodule.

As for representations of Lie algebras in finite characteristics, the irreducible
representation corresponding to a given highest weight that may have a smaller dimension
than the classical one [7-10].

Another feature can arise fof, (s/(N)) representations in the limit wheyl = 1: they
can benon-integrable in the sense that thig, (s/(N — 1)) C U,(sl(N)) representations it
contains may become indecomposable.

In the classical case and in the case of gengrithe Gelfand—-Zetlin (G-2Z) basis for
U, (s1(3)) irreducible representations simultaneously diagonalizes the Cartan genarators
the quadratic Casimir operat@iy, (2 of U, (s(2)) [11].
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Wheng is a root of unity, some of thi, (s/(2))-modules involved in a simpl, (s/(3))-
module can be indecomposable with a non-diagonalizable action of the quadratic Casimir
operatorCy, (si2)- If the definition of the G-Z basis includes the requirement tat;(2))
is diagonalized, then this basis cannot exist for such a representation. If we consider the
weaker requirement thaty, ) is expressed in indecomposable blocks, then the G-Z
basis exists, as we will show. Indeed, in the limit whets a root of unity of the order
of [, thel4, (si(2)) representations of dimensiohs- d and! — d have the same value of
Cy,s12) and they are coupled in a single indecomposable representation.

The signal that the G—Z basis without modification does not work for non-integrable
irreducible restricted representations at roots of unity is given by the fact that some
denominators vanish in the coefficients. No scale change can solve this problem. As
explained in [12], a solution to cure the divergences is to suitably mix the states with the
same quantum numbers. Since this mixing involves zero or infinite coefficients, the correct
way is to perform it at generig and to take the limit. The limit o&ll matrix elements
being zero or finite, we get a well-defined description of the representatigh-=atl.

With such a well-defined description, it is then possible to exhibit the subrepresentation,
in the cases when it exists.

The results of this paper may be summarized as follows.

e In the classical case, or wheq is generic, the totald,(s/(2)) representation
corresponding to a given value of the Cartan elemgrt2h, that commutes with/, (sI(2))
is equivalent to the tensor product of tif) (s/(2)) irreducible representations, the rule is
shown in figure 3. Whemy! = 1, this property remains true, but the tensor product now
decomposes into indecomposable and irreducible representations.

o If we introduce the two transformations acting on G—Z states (the definitions are given
in the next section)

(P13 P23 P33 (P13 D23 P33
81! ‘ P12 P22 > —> ‘ p22+1 pr2—1 > 1)
P11 P11
82 V(paz+1, p23, p13—1) —> V(p13, p23, P33)
p33+1 P23 p1z—1 P13 P23 P33
‘ P12 P22 > —> ‘ P12 P22 > (2
P11 P11

S, is defined wherpsz + 1 > p23 > p13— 1 only, then

—if a stateand its image byS; belong to the representation, then these two states belong
to the same (indecomposal(si(2))) representation and should be redefined. The set of
redefined states looks like a teepee or a tent, depending on the highest weight (see figure 1).
This happens when the highest weights such that(x, 6¥) > [, wheref is the longest
root.

—the image ofS, is a subrepresentation. This image is exactly the subrepresentation
described in [10]. This happens when the highest welgistsuch thatx + p, 6Y) > [ and
when its image by the reflection with respect to the e+ p, 6¥) =1 is also a dominant
weight (o being the sum of fundamental weights).

The transformationss; and S, are particular cases of transformations introduced in
[13] for periodic representations, corresponding to (i) symmetry among the G—Z indices of
the same line: permutations of these indices leave the coefficients invariant (ii) invariance
under a translation by of a G—Z index. These symmetries become a problem for the
restricted representations we consider here. The mixing and normalization of states that we
introduce actually break them. The transformati&innow defines an isomorphism from
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Figure 1. Teepee

M, (p3z+1, p23, p13 — 1) to a subrepresentation of,(p13, p23, p33).

The structure of this paper is as follows. In section 2, we recall the definition of the
guantum enveloping algebtg, (s/(3)) and give the expression of the G-Z basis for generic
deformation parametey. In section 3, we propose a mixing of some states of the G—Z
basis that allows a well-defined limit wheh = 1. In section 4, the subrepresentation of the
regularized representation is exhibited, when it exists. Finally, some technical expressions
are given in appendices A and B for indecomposadld)ési(2)) representations and for
action within the set of redefined states. Final checks of finiteness of coefficients are made
in appendix C.

2. Definitions

Let U, (s/(3)) be the unital algebra generated &y f; andh; (i = 1, 2) with the relations

[hi, ej] = aije; [hi fi] = —ai; f;
h; —h
g — g
lei, fil =6ij——— = &ij[hi]
i L i @)

2 -1 2
eieir1 — (g +q Heiejrie; +ejr1e; =0

fRfior— (@ +q i fisifi + fisrf2=0

2 -1

where (g;;) = (—l 5
[x] = =L

Let 3, a2 be the simple rootsys, w; the fundamental weight®? = Zw; & Zw, the
weight lattice andyy’, o the co-roots, with{w;, ozjv) = 8.

The longest root i$¥ = oy + a2. The sum of the fundamental weights (equal to half
the sum of positive roots) is = a1 + .

We will later be interested in the root of unity case. let 2 be an odd integer.

Wheng' = 1, (¢")! is central and we will add the relations corresponding to the restricted

) is the Cartan matrix ofs/(3). We defineg-numbers by
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specialization

ell = elz = e13 =0 with e3 = e1er — q_lezel

fi=fi=/f=0 with f3 = fof1 —qfifz (4)
2h;

g ' =1

These relations define a co-ideal with respect to the Hopf structure, so that quotienting by
them leads to a Hopf algebra. We do not introduce the divided powers of the generators.
The generators;, f; andk; and relations (3), (4) actually define a finite-dimensional Hopf
subalgebra of the usual restricted specialization. As proved in [7], the study of finite-
dimensional representations of the restricted specialization can be reduced to the study of
those of finite subalgebra.

The finite-dimensional irreducible representations are labelled by integral dominant
weightsA = Ajw1 + Aawz, With A; € Z,. We can limit the study to 6< A; < [ since
translations of the highest weight by multiples lof; provide equivalent representations
(strictly speaking, the representations are only equivalent as representations of the algebra
generated by;, f; andg” (i = 1, 2); a global translation of the weights is, however, the
only difference).

As in the case of affine Lie algebras, a representatibis called integrable (see, e.g.
[14]) if

() M = ,.p My, i.e. M is the direct sum of its weight spaces (common eigenspaces
of the Cartan generators), the weights being integral (belonging to the weight IBjtice

(ii) dim M, < oo, i.e. each weight space has a finite dimension,

(ii) M decomposes into a direct sum of finite-dimensional representations of the
U, (s1(2)) subalgebras generated by f;, ¢", ¢~ fori =1, 2.

In the case we consider, all irreducible representations have a finite dimension, since, at
roots of unity, the quantum algebra is a finite-dimensional module over its centre. The first
two requirements for integrability are hence always satisfied for irreducible representations.
As we will see, the third one is not always satisfied sinéemay contain indecomposable
representations of its quantum subalgebras.

For genericg, any finite-dimensional irreducible representation can be described using
the G-Z basis. LetM,(pis, p23, p33) be the representation with the highest weight
(A1, A2) = (p13 — p23 — 1, p23 — p3z — 1), (the eigenvalues of; and /, on the highest
weight vector). It acts on the vector spad€pis, p23, p33) of dimension

d(p1s. p23. p33) = 3(p13 — P23) (P23 — p3s) (P13 — P33) (5)

and spanned by vectors

P13 P23 P33
P12 P22 > (6)

P11
with p;; € Z, such that

P13 = P12 > P23 = P22 > P33 P12 = p11> P22 (7

All the p;; are defined up to an overall constant. The only differences are involved in the
matrix elements. We usg;; = h;; — i instead of the standar; to make the symmetries
among the indices of the same line more explicit. The first line of indices is constant for
a given representation. We will sometimes omit it, such as when no confusion is possible
and when it is the same as in (6).
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The representationsVl, (p1s, p23, p33) described here are actually in one-to-one
correspondence with the classical ones. To get all #§& 2 4 inequivalent representations
corresponding to a classical, one can add to the inglexor to the indexpi,, or to both
of them, the constantri/ Ing (or 1/2 if ¢' = 1).

At genericg as well as in the classical case, the G—Z basis expressds, th&3))
representation as a direct sum #f(s/(2)) irreducible representations (corresponding to
fixed values ofp1> andpy). By U, (s1(2)), we will always mean the subalgebralgf(si(3))
generated by, f1, k1.

As in [10], we shall depict the set of G—Z state in a three-dimensional pyramid, with one
point for each vector of the basis. The horizontal coordinates, are simply the values of
the orthogonal Cartan elemeritg and k1 + 2h,. The third coordinatez, starts from zero
and increases when the dimensipp — p2, of thel{, (s/(2)) representation decreases.

X =2p1— (pr2+p2) —1
y =3(p12+ p22) — 2(p13+ p23+ p3z) — 1 (8
Z = Min(piz — p12, p23 — paz — 1.

The actions of the generators on the G—Z basis are given by

hilp) = 2p11 — (p12+ p22) — D|p)

9
ho|p) = (2(p12+ p22) — p11— (p13+ p23+ pz3) — Dp)
£ilp) = (p12 — p1a+ Ulpu — pzo — 1P| P22 -1 p22>
p11
(10)
_ _ _ 1/2| P12 p22
e1lp) = ([p12 — pull p11 — p22)) P+l >
PP 172 pp 172
falp) = (;3"(1, 2; p>> Ipz—1) + ( ;3%2, 2 p>) p22— 1)
PP 12 PP 12 )
1 P> 1P>
e2|p) = < (1,2 p1o+ 1)) p12+1) + ( (2,2; poo+ 1)) |p22 + 1)
P3 P3
where
P1(1,2; p) = [p13 — p12+ U[p12 — p23 — 1][p12 — p3z — 1]
P1(2,2; p) = [p13 — p22+ [ p23 — pa2+ 1][p22 — p3z — 1]
P>(1, 2; = —
2 ( p) = [p12— pul (12)

P2(2,2; p) = [p11 — p2]
P3(1,2; p) = [p12 — p22l[ p12 — p22 — 1]
P3(2,2; p) = [p12 — p22l[ p12 — p22 + 1]

where p stands for the set of indices;;, and wherep;; £ 1 in an argument shows the
modified index only. The two first argumenits; of the coefficientsP, indicate whichp;;
is changed.

For genericg, the g-integers involved in the coefficients vanish only at zero argument.
Vanishing denominators are compensated by two vanishing numerators.

When g goes to a primitivelth root of one, with! odd, theg-integer k] goes to
zero iff n is a multiple of/. For this reason, new zeros arise in the denominator when
p13— p3z— 2 > [, i.e. when the highest weight satisfigs 6¥) = A; + A, > [. These new
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zeros are generally not compensated in the numerator. The previously defined G-Z basis is
then not well-defined in this case.

When (i, 0Y) = p13— p3z— 2 < I, the representation is correctly described by the G-Z
basis. Thel,(s/(2)) representations it involves are completely reducible into irreducible
representations of dimensions less than

The remaining case is thgns — ps3— 2 > [ and still p13— p23 <1 and po3 — p3s < [.

It is the aim of section 3 to get a well-defined description of this case.

3. Regularization

We still consider a representatid, (p13, p23, ps3) of U, (si(3)) atgenericq. Let! > 2
be an odd integer. Whepys — p33 > [ (and p13 — p23 < I, p23 — paz < [), in prevision of
the case;’ = 1, we perform the following transformation that depends .on

Let us considev‘ p1z , p22> with p12 — p2» > I. When both (7) and
11

P13 2 p22+1 > paz > p1o—1 > ps3

13
p2+1 2> pi1> pr2—1 (13)

are satisfied, i.e. if the image +f712 » p22> by S, defined by (2) also belongs to the
11

representation, we define

P12 ot P22> B <( [1]1/2 0 )
= 1

12
‘ P22+ l P12 — l > H) 72

P12 P22
P11

p22+1 p2—1
P11

, [+
P11
(14)

This transformation is inspired by that introduced in [12]. As in this paper, the
transformation matrix has determinant 1 and its eigenvalues go to @i the limit
wheng! = 1. In the following, we keep the primed states and forget the corresponding
unprimed states.

The set of G-Z states such that their image$yis still a G—Z state (i.e. satisfying
both (7) and (13)) is displayed (on the hexagonal basis of the pyramid) in figure 1. It looks
like a teepee or a tent, depending on the valueg;gf It includes both the redefined states
and thelt, (s/(2)) representations invariant undgy, with dimensionpi> — p2> = I, that are
not redefined.

3.1. Indecomposablig, (s/(2)) subrepresentations

The two U, (sI(2)) representations corresponding ta, > pi11 > p22 (of dimension

p12 — p22) and poo +1 > p11 > p12 — [ (of dimension 2 — (p12 — p22)) are gathered
into a sum of dimension 2I. In the limit wheqi = 1 this sum becomes indecomposable;
it is described in figure 2. The actions of the generatgrand f; on this indecomposable
representation are given in appendix A. Initially, and f; induced only moves along the
x-direction. Now, the primed states replace the unprimed states inside the teepeg, and
and f; induce moves along the-directionand possibly shortcut down in the-direction.

In the extreme case, this shortcut can lead directly from top to bottom.
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N

Figure 2. Indecomposablé/, (s/(2)) representation witly” = 1 and p1p — p2p = 10.

The quadratic Casimir operator off,(s/(2)) acts on the space spanned by

’ /
’plz p22> and ’ P2+l p12_1> as the non-diagonalizable matrix
p11 pr1u

P12—p22 P22— P12
q +q 0 ) (15)

CM[](SI(Z)) = (l(q _ q—l)z[pl2 _ PZZ] qp12—p22 + quz—plz

To conclude, thé{, (s/(2)) modules with the same value i + 2k, that would have
the same value of the quadratic Casimir whgn= 1 are pairwise coupled in a single
indecomposable representation. The same thing happens in the fusion rule of restricted
irreducible representations dff,(s/(2)) [14-16]. The totall{,(s/(2)) representation
corresponding to a given value aéf + 2k, is actually equivalent, as in the classical or
generic case, to the tensor product of two irreducible representations. If the value of
hi1+2h; is greater than or equal @3 —2p23+ pas+2 (corresponding to the classicd(2)
representation with the highest dimensipnz — p33 — 1), the totalld, (s/(2)) representation
corresponding to this value is equivalent to

ji=3(p1zs—ps— 1

L1 (16)
J2 = §(p13+ p2s — 2paz — 1 — (h1 + 2hy))

A® Jj2 with {
as shown in figure 3 which is easier to understand than the formula. In the case where the

value off1 4 2h; is lower or equal tgriz—2p23+ pa3+ 2, the totald, (s/(2)) representation
is equivalent to

ji=3(ps—ps— 1)

1 17)
J2 = g(h1+ 2h2 — (=2p13+ p23+ p3z — 1))

J1® Jj2 with {
i.e. the same as before, but starting from the opposite edge of the hexagon.

3.2. Other effects of regularization

In the limit wheng! = 1, the coefficients that would involve fractions such%sremain

zero. Although [] is zero atg’ = 1, there is no ambiguity in such limits. This means

in particular that the states that are classically forbidden (those that would not respect the
triangular inequalities (7)) remain forbiddengt= 1. The vector spac# (pis, p23, p33)

on which the representation actsgat= 1 is the same as in the classical case or at generic
q. (As we will see in section 4, the so-obtained representation is sometimes not irreducible,
and we will be led to take quotients.)
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J1

J2

Figure 3. Rule fori4, (s/(2)) subrepresentation.

Since redefinition (14) contains coefficients that diverge in the lirhi= 1, we have
to carefully check the behaviour of the regularized representation on redefined states and
when crossing the boundary of the teepee, the domain that contains the redefined states.

e In appendix A, the actions of; ande; are explicitly given. The coefficients are
finite. As explained before, they describe well-defined indecomposable representations of
Uy (s1(2)).

e In appendix B, the actions o#, and f, within the teepee are computed. The
coefficients are also finite. The diverging coefficient in (14) essentially enhances differences
of coefficients that have the same limits.

¢ In appendix C, a compendium of all possible sources of divergences is presented. In
each case, the reason why the divergence disappears is briefly explained.

The locations where the generators can lead from a non-redefined state to a redefined
one, or vice versa, is the set of G-Z states satisfying one of the following equations:

—Ileft roof: p22 = p13—1,

—right roof: p1o = pas+1+1,

—front ‘entrance’: po; = p11 — 1,

—back ‘entrance’:p;o = p11+1—1,

—I-dimensional/, (s/(2)) modules: p1> — p2o = I.

The adjectives ‘left’, ‘right’,. .. refer to figure 1. The first four cases are the boundaries
of the teepee within the pyramid. The last case corresponds to non-redefimadnsional
modules. The boundaries are defined as belonging to the teepee. Note that the front and
back roofs are boundaries of the pyramid, not boundaries of the teepee in the pyramid.

After the regularization defined by (14), all the coefficients remain finite or go to zero
in the limit whereq’ = 1. A representatio, %(p1s, p23, p33) atq' = 1 is then obtained
by defining the action of the generators using the limit of these coefficients. As these
coefficients are finite, they indeed define elements of (Egis, p23, p33)). Moreover,
these elements satisfy the commutation relatiorig, 0§/ (3)) atg' = 1, since these relations
are continuous functions of the coefficients.
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4. Reducibility

The regularized representatidi,"%(p13, p2s, p33) atq' = 1 is not always irreducible. We
recall that we considepiz — p33 > [ (otherwise, nothing new happens with respect to the
generic case).

If posis equal top;z—1 Or t0 paz+1, My *(p13, p23, p3a) is irreducible. Otherwise, i.e.
if min(p13z — p23, p23 — p33) < I, the applicationS, defined in equation (2) from the vector
spaceV (p33+ 1, p23, p13 — 1) to the vector spac® (pis, p23, p33) is @ morphism from the
representatio, (ps3 + 1, p2s, p1s— 1) to the representatiohy %(p1s, p2s, p3s). Its image
is isomorphic toM, (pa3+1, pe3, p13—1), and is a subrepresentation ™ %(p13, p23, p33)-
It is easy to check that

e none of the redefined state belongs to this image, and

e No action of the generators connects this image directly to the set of redefined states.

It can then be seen by using only equations (10), (11) that this image really decouples.
The factors p1» — paz (—1)]¥2 and [p13 — po2 (+1)]¥/?, that vanish forpis = paz+1 (+1)
and p2; = p13 — I (—1), respectively, are enough.

The representatiot,%(p1s, pa3, p3s) is then the direct sum of the two subrepresen-
tations respectively characterized by Mg — pss3, p13 — p22 + 1) > [ and maxXpi, —
P33 p13— p22+1) <.

The first one, equivalent t8f, (pss + I, p23, p13 — 1), then has a classical counterpart.
In [10], this subrepresentation is identified with the (pigs — po3 + [, p23 — p13 + 1) top
layers of the pyramid.

The second one, that contains all the redefined states, has no classical analogue.
It corresponds in [10] to thepizs — p33 — [ bottom layers of the pyramid (its height
is the same as that of the teepee). We denote itMy/*(pia. pos. pss) as it is
the quotient of My %(p1a, pas, p33) by Sa(M,(pss + [, pas, p13 — ). Its dimension is
d(p13, p23, p33) — d(p33+ 1, p23, p1z—1).

These two summands are irreducible themselves. The reducibility of one of the
summands would require more singular vectors in the Verma module with the same highest
weight asM, (p13, p23, p33) than found in [8].

5. An interesting case: flat representations

An interesting case is provided by the flat representations, i.e. those for which the weight
multiplicities are at most 1. They correspond to parameters suctpthat ps3 =1 + 1.

In this case, no state needs to be redefined, since the teepee reduces to one single line
with [ points (with p12 = pi3 and p2» = psz + 1). These representations are actually
integrable in the sense given in section 2, sifked”) = [ — 1, the maximum value for
integrable representations.

If pasis equal topiz—1 = paz+1 0Or to p13—1 = paz+1, thenM,(p13, pos, p3a) itself
is flat and irreducible. Otherwise, the flat irreducible representation is, as explained before,
M, (p13, p23, p33)/S2(My(p13 — 1, p23, ps3+ 1)), of dimensiond (p13, p23, p3s) — d(p13 —

1, p23, psz+ D).

The states of this quotient are then the G-Z states satisfying the usual triangular

inequalities (7) and

P12 = P13 or p22=p3s+1=pz—1L (18)

The existence and dimension of these representations were known from the character
formulae [7, 8].
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The flat irreducible representations 4 (s!(3)) were described in [18] as quotients of
singular limits of flat periodic representations of dimensién They were also obtained
in [13, 19] within the G—Z basis, but with a different prescription that we will recall now.
Consider the vector space spanned by the vectors

P13 P23 p2s—1
P12 P23 > (19)
P11
with po3 + 21 > p13 > pa3+ 1 and wherep,, = pog is frozen.
With the triangular inequalities (7), this definesig(si(3)) representation with a
triangular set of weights (hence flat) of dimensign = d(pis, p23, p2s — 1). This

representation is not irreducible and splits into four subrepresentations obtained as follows:

P13 = p12 > p23+1 and P12 2 p11> pa3+ 1.
Flat triangular representation (left corner) of dimensiarn= d(pi3, pas+1, p2z+1—1) =
5(P13— pas— (P13 — paz— 1 + D).

P13 = p12 > paz+1 and p12—1 > p11 > pos.

Another flat triangular representation (right corner), of dimensipn= d(piz — [, p23s —
l,ppz—1-1=d

p13—1 2 p12 > p23 and D12 2 P11 > D23

Another flat triangular representation (bottom corner), of dimengios d(p13 — I, p23 —
l,p3s—1—-1) =

P13 2 P12 > P23 and P12 2 p11 > pra—1 and p23+1 2> p11 > poa.

The flat hexagonal representation of dimensigr- d; — do — d3 = do — 3d;.

This description is linked to the G-Z formalism of this paper by the identification
P13 = p23+1, p23= p13— I, psz = p3z = p1z — [ — 1. A transformation inspired by both
S1 and S, relates them, namely

D13 D23 P33 p23+1 p1z—1 P33
P12 P22 > > P12 P22 >
P11 P11
if po2=p13—1
(20)
D13 D23 D33 p23+1 p1z—1 P33
J4P) P22 > — p22+1 p12—1 >
P11 P11
if p1o = p1a.

6. Conclusion

The description oftf, (sI(N)) representations with the G-Z basis will necessitate the
knowledge, within the G-Z basis, of some indecompos&hie/(N — 1)) representations,
probably those involved in the decomposition of tensor products of irreducible ones [20].
The representations will be built by collecting thig(s! (N — 1)) representations that would
have the same values of the Casimir operatgg}zslw_l)) in the limit ¢’ = 1. The use of
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transformations that generalife will help in characterizing them. By doing this, analogues
of S, will provide the subrepresentations.

The restricted representations we have described here can be used as explained in
[19] to build special kinds of partially periodic (unrestricted) irreducible representations of
U, (sI(N)) with N > 3.

One could also wonder whether the periodic indecomposable representations of
U,(s1(2)) of dimension 2 that arise in the fusion of periodic irreducible representations
[21] may also appear in sonié, (si(3)) irreducible representations.
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Appendix A. Indecomposableld,(sl(2)) subrepresentations

An indecomposable representation of dimensidni2 made from the twold,(s!(2))
representations corresponding g, > p11 > p22 (of dimensionpio — p22) and poo +1 >
p11 > piz — L (of dimension 2 — (p12 — p22)). The states that have a commemy are
mixed as explained in (14) and the limjt = 1 is taken. The generatoes and f; act on
it as

fu| P12 it p22> = ([p12— pur+ Llp11 — p22 — 1D*?

P12 P22
pn—1

for p11 > p2+1+1 or p11 < pr2—1

’ /
f P12 P22> = ([p12 — p1r + L[ p11 — paz — 1])1/2 P12 X P22>
P11 p11—

for poo+12 p11> pro—1+1
P12
f1

p22\ _ 1/2| P12 P22 '
= — —1
po+l+1 > ([p12 — p22—1]) poat 1 >

(instead of 0)

’
P12 P22
=0
h pr2—1+1 >

, 21)
f p22+1 P12—1>

po—1+1 = (—[p12— paa — IDY?

(instead of 0)

P12 P22
p2—1

= ([p12 — p11+ L[ p11 — p22 — 1D¥?

h p2+1 pr2—1\
pr1u

X

p22+1 pa—1\
pu—1

+(=[p12 — p11+ 1lp11 — p22 — 1) Y3 p12 — p2dl

P12 P22
pin—1

for poo+1> p11> pro—1+1.

X
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ep| P12 it p22> = ([p12 — pull p11 — p22)*?

P12 P22
pun+1

for p11 > poo+10r p11 < p1o—1

/
ep| P12 p22> = ([p12 — paall p11 — p22D)*'?

P12 P22 >/
P11 pui+1

for poo+1 > p11> p12—1

P12

P12 P22\ _ 1/2 P22 '
= — —1
e1 pio—1 > ([p12— p22—1]) pia—l+1 >

(instead of 0)

er| P12 P22 >/ —0 (22)
p22+1
p2+1 pa—1\ 12| P12 D22
= (“[p12— pr2—1
e1 oy +1 > (=[p12 — p22—1]) P41
(instead of 0)

p2+1 pra—1\ 12| P22 +1 P12—1>/

e = _— J—
1 i > ([p12 = p1all P11 — p22]) Pt

+(=[p12 — puadl p11 — p22)) Y2 p12 — p22]

P12 P22
pii+1

for poo+1 > p11 > p1o— 1.

We can check that} and f] vanish on this indecomposable representation.

Appendix B. Action of e, and f> in the teepee

Let us consider‘ P12 ) p22> With p1» — p22 > I, such that both (7) and (13) are
11

I
satisfied. Thenf,| 12 , P22} it given by a formula analogous to (11), but with
11

primed states on the right-hand side. This is true as long as the final primed states are
defined. One has

/ 1/2
% p22+1 pr2—1\ _ Ple(l 2; p) ! p22+1 prz—1—1\
p’l Pz 7 D11
PP 1/2 _ AV
(222 pw) |P2TIE pra—1
P3 P11
P1P2 1/2 _1 /
+D pro—> pra-t (_ 1,2 P)) P12 P22
P22—> paxt+l P3 P11
PP 1/2 _1 ’
Dy (-T2 ) |2 P > (23)
p22—> p22+l P3 P11
1/2 ’
p22+1 pz—1\ <P1P2 ) p22+1 pr2—1+1
e = 1,2 +1
2’ puil > Ps ( prz+ 1) P11
P, P 1/2 LY
+( 22,2 pa+ 1) p2t+i+1 p12—1
Ps3 P11
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P, P 12
+IDI’12—>P12—1 (_ ; 2 1,2 P12+ 1))

P22—> paz2tl 3

pr2+1 D22 >/
P11

P P 1/2 1 /
+D p12— p12—1 (_ e (27 2; P22 + 1)) P12 bz + > (24)
Pp2z2—> paz+l P3 P11
where
. 1
Dy (f) = lim —(f(a) — f(D)). (25)

a'—1[1]

In the cases we consider, argumeatand b differ by multiples of! and the limit in (25)
is finite. Moreover,D acts as a derivative anﬂﬁs (f) =Dussp (f) + Do a(f).

Appendix C. List of all the possible divergences

C.1. Vanishing denominators in equation (11)

It is easy to see that the denominators in the actios @nd f> (11) vanish in the following
cases.

e For a ‘classical’ reason, i.e. whepy, — po; = 1 and when the action of; or f>
would lead to a forbidden state whepg, — poo = 0. In such cases, the denominator comes
with two zeros in the numerator that cancel this branching.

e When acting on a G—Z state wifh,— p>» = [. The two resulting states with diverging
coefficients actually belong to the set of redefined states. The regularization compensates
the divergence. In the case when one of the resulting states does not exist classically, the
coefficient of the single remaining state (hence not to be redefined) has also a zero in the
numerator and it remains finite.

e When the action leads to a state wijth, — po2 = . If only one initial state can lead
to it, the coefficient is finite due to a vanishing numerator. If two states lead to it, they have
the same weighand same value 0fCy, (2, SO they are redefined. The action on these
redefined states contains finite differences of the diverging coefficients.

C.2. Entering and leaving the teepee

We now summarize the reasons why the actionsfofand e, are well-defined on the
boundary of the teepee. Let us first consider the actiofy @nde, on a state lying outside
the teepee, the effect of which is to enter the teepee. We have four different ways of
entering.

e Through the left roof: po» = pi3 — [ for the final state. This is reached &5
P12 piz—I1+1

p11
compensates the diverging factor from the redefinition (14) of the final state. This is true

unlesspi> = pi13, In which case this vanishing factor compensates a factor fRgrthat
goes to zero. We arrive in this case ppp — p22> = [ and there is no redefinition.

e Through the right roof:p1, = pss+1 + 1 for the final state. This is reached as
P33+ p

P11
compensates the diverging factor from the redefinition (14) of the final state. This is true

unlessp,, = paz+ 1, in which case this vanishing factor compensates a factor #gthat
goes to zero. We arrive in this case ppp — p22> = [ and there is no redefinition.

acts on

>. A vanishing factor p;3 — p2o] from the numeratorP;

acts on 22) A vanishing factor p1» — pss — 1] from the numerator;
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e Through the front ‘entrance’p,, = p11 — [ for the final state. This is reached gs
P12 pu—1I1-1

P11
the numeratorP, compensates the diverging factor from the redefinition (14) of the final

state. Note that fop;, = p11, this final state is not redefined, and the compensation comes
from the denominator.

e Through the back ‘entrancep;, = p11 +1 — 1 for the final state. This is reached as
pui+1 p

P11
from the numerato?, compensates the diverging factor from the redefinition (14) of the

final state. Note that fop11 = poo+1, this final state is not redefined, and the compensation
comes from the denominator.

We now considerf, ande, acting on a redefined state, such that these actions lead to
at least one non-redefined state. Again, the diverging coefficient involved in (14) may be
a source of a problem in the boundary. Without going into details, the finiteness argument
is again that the boundary of the teepee is a place where one of the numePatorsps,
vanishes and compensates the denominator in (14).

acts on , With p12 — p11 > 0. A vanishing factor p;; — p2o] from

f2 acts on 12>, with p11 — p22 > 1. A vanishing factor p1o — p11 + 1]
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